VC中的字节对齐

 
    当在C中定义了一个结构类型时,它的大小是否等于各字段(field)大小之和?编译器将如何在内存中放置这些字段?ANSI C对结构体的内存布局有什么要求?而我们的程序又能否依赖这种布局?这些问题或许对不少朋友来说还有点模糊,那么本文就试着探究它们背后的秘密。
    首先,至少有一点可以肯定,那就是ANSI C保证结构体中各字段在内存中出现的位置是随它们的声明顺序依次递增的,并且第一个字段的首地址等于整个结构体实例的首地址。比如有这样一个结构体:
 
  struct vector{int x,y,z;} s;
  int *p,*q,*r;
  struct vector *ps;
 
  p = &s.x;
  q = &s.y;
  r = &s.z;
  ps = &s;
  assert(p < q);
  assert(p < r);
  assert(q < r);
  assert((int*)ps == p);
  // 上述断言一定不会失败
    这时,有朋友可能会问:"标准是否规定相邻字段在内存中也相邻?"。 唔,对不起,ANSI C没有做出保证,你的程序在任何时候都不应该依赖这个假设。那这是否意味着我们永远无法勾勒出一幅更清晰更精确的结构体内存布局图?哦,当然不是。不过先让我们从这个问题中暂时抽身,关注一下另一个重要问题————内存对齐。
    许多实际的计算机系统对基本类型数据在内存中存放的位置有限制,它们会要求这些数据的首地址的值是某个数k(通常它为4或8)的倍数,这就是所谓的内存对齐,而这个k则被称为该数据类型的对齐模数(alignment modulus)。当一种类型S的对齐模数与另一种类型T的对齐模数的比值是大于1的整数,我们就称类型S的对齐要求比T强(严格),而称T比S弱(宽松)。这种强制的要求一来简化了处理器与内存之间传输系统的设计,二来可以提升读取数据的速度。比如这么一种处理器,它每次读写内存的时候都从某个8倍数的地址开始,一次读出或写入8个字节的数据,假如软件能保证double类型的数据都从8倍数地址开始,那么读或写一个double类型数据就只需要一次内存操作。否则,我们就可能需要两次内存操作才能完成这个动作,因为数据或许恰好横跨在两个符合对齐要求的8字节内存块上。某些处理器在数据不满足对齐要求的情况下可能会出错,但是Intel的IA32架构的处理器则不管数据是否对齐都能正确工作。不过Intel奉劝大家,如果想提升性能,那么所有的程序数据都应该尽可能地对齐。Win32平台下的微软C编译器(cl.exe for 80×86)在默认情况下采用如下的对齐规则: 任何基本数据类型T的对齐模数就是T的大小,即sizeof(T)。比如对于double类型(8字节),就要求该类型数据的地址总是8的倍数,而char类型数据(1字节)则可以从任何一个地址开始。Linux下的GCC奉行的是另外一套规则(在资料中查得,并未验证,如错误请指正):任何2字节大小(包括单字节吗?)的数据类型(比如short)的对齐模数是2,而其它所有超过2字节的数据类型(比如long,double)都以4为对齐模数。
    现在回到我们关心的struct上来。ANSI C规定一种结构类型的大小是它所有字段的大小以及字段之间或字段尾部的填充区大小之和。嗯?填充区?对,这就是为了使结构体字段满足内存对齐要求而额外分配给结构体的空间。那么结构体本身有什么对齐要求吗?有的,ANSI C标准规定结构体类型的对齐要求不能比它所有字段中要求最严格的那个宽松,可以更严格(但此非强制要求,VC7.1就仅仅是让它们一样严格)。我们来看一个例子(以下所有试验的环境是Intel Celeron 2.4G + WIN2000 PRO + vc7.1,内存对齐编译选项是"默认",即不指定/Zp与/pack选项):
  typedef struct ms1
  {
     char a;
     int b;
  } MS1;
    假设MS1按如下方式内存布局(本文所有示意图中的内存地址从左至右递增):
       _____________________________
       |       |                   |
       |   a   |        b          |
       |       |                   |
       +—————————+
 Bytes:    1             4
    因为MS1中有最强对齐要求的是b字段(int),所以根据编译器的对齐规则以及ANSI C标准,MS1对象的首地址一定是4(int类型的对齐模数)的倍数。那么上述内存布局中的b字段能满足int类型的对齐要求吗?嗯,当然不能。如果你是编译器,你会如何巧妙安排来满足CPU的癖好呢?呵呵,经过1毫秒的艰苦思考,你一定得出了如下的方案:
       _______________________________________
       |       |\\\\\\\\\\\|                 |
       |   a   |\\padding\\|       b         |
       |       |\\\\\\\\\\\|                 |
       +————————————-+
 Bytes:    1         3             4
    这个方案在a与b之间多分配了3个填充(padding)字节,这样当整个struct对象首地址满足4字节的对齐要求时,b字段也一定能满足int型的4字节对齐规定。那么sizeof(MS1)显然就应该是8,而b字段相对于结构体首地址的偏移就是4。非常好理解,对吗?现在我们把MS1中的字段交换一下顺序:
  typedef struct ms2
  {
     int a;
     char b;
  } MS2;
    或许你认为MS2比MS1的情况要简单,它的布局应该就是
       _______________________
       |             |       |
       |     a       |   b   |
       |             |       |
       +———————+
 Bytes:      4           1
    因为MS2对象同样要满足4字节对齐规定,而此时a的地址与结构体的首地址相等,所以它一定也是4字节对齐。嗯,分析得有道理,可是却不全面。让我们来考虑一下定义一个MS2类型的数组会出现什么问题。C标准保证,任何类型(包括自定义结构类型)的数组所占空间的大小一定等于一个单独的该类型数据的大小乘以数组元素的个数。换句话说,数组各元素之间不会有空隙。按照上面的方案,一个MS2数组array的布局就是:
|<-    array[1]     ->|<-    array[2]     ->|<- array[3] …..
__________________________________________________________
|             |       |              |      |
|     a       |   b   |      a       |   b  |………….
|             |       |              |      |
+———————————————————-
Bytes:  4         1          4           1
    当数组首地址是4字节对齐时,array[1].a也是4字节对齐,可是array[2].a呢?array[3].a ….呢?可见这种方案在定义结构体数组时无法让数组中所有元素的字段都满足对齐规定,必须修改成如下形式:
       ___________________________________
       |             |       |\\\\\\\\\\\|
       |     a       |   b   |\\padding\\|
       |             |       |\\\\\\\\\\\|
       +———————————+
 Bytes:      4           1         3
    现在无论是定义一个单独的MS2变量还是MS2数组,均能保证所有元素的所有字段都满足对齐规定。那么sizeof(MS2)仍然是8,而a的偏移为0,b的偏移是4。
    好的,现在你已经掌握了结构体内存布局的基本准则,尝试分析一个稍微复杂点的类型吧。
  typedef struct ms3
  {
     char a;
     short b;
     double c;
  } MS3;
    我想你一定能得出如下正确的布局图:
        
        padding 
           |
      _____v_________________________________
      |   |\|     |\\\\\\\\\|               |
      | a |\|  b  |\padding\|       c       |
      |   |\|     |\\\\\\\\\|               |
      +————————————-+
Bytes:  1  1   2       4            8
          
    sizeof(short)等于2,b字段应从偶数地址开始,所以a的后面填充一个字节,而sizeof(double)等于8,c字段要从8倍数地址开始,前面的a、b字段加上填充字节已经有4 bytes,所以b后面再填充4个字节就可以保证c字段的对齐要求了。sizeof(MS3)等于16,b的偏移是2,c的偏移是8。接着看看结构体中字段还是结构类型的情况:
  typedef struct ms4
  {
     char a;
     MS3 b;
  } MS4;
    MS3中内存要求最严格的字段是c,那么MS3类型数据的对齐模数就与double的一致(为8),a字段后面应填充7个字节,因此MS4的布局应该是:
       _______________________________________
       |       |\\\\\\\\\\\|                 |
       |   a   |\\padding\\|       b         |
       |       |\\\\\\\\\\\|                 |
       +————————————-+
 Bytes:    1         7             16
    显然,sizeof(MS4)等于24,b的偏移等于8。
    在实际开发中,我们可以通过指定/Zp编译选项来更改编译器的对齐规则。比如指定/Zpn(VC7.1中n可以是1、2、4、8、16)就是告诉编译器最大对齐模数是n。在这种情况下,所有小于等于n字节的基本数据类型的对齐规则与默认的一样,但是大于n个字节的数据类型的对齐模数被限制为n。事实上,VC7.1的默认对齐选项就相当于/Zp8。仔细看看MSDN对这个选项的描述,会发现它郑重告诫了程序员不要在MIPS和Alpha平台上用/Zp1和/Zp2选项,也不要在16位平台上指定/Zp4和/Zp8(想想为什么?)。改变编译器的对齐选项,对照程序运行结果重新分析上面4种结构体的内存布局将是一个很好的复习。
    到了这里,我们可以回答本文提出的最后一个问题了。结构体的内存布局依赖于CPU、操作系统、编译器及编译时的对齐选项,而你的程序可能需要运行在多种平台上,你的源代码可能要被不同的人用不同的编译器编译(试想你为别人提供一个开放源码的库),那么除非绝对必需,否则你的程序永远也不要依赖这些诡异的内存布局。顺便说一下,如果一个程序中的两个模块是用不同的对齐选项分别编译的,那么它很可能会产生一些非常微妙的错误。如果你的程序确实有很难理解的行为,不防仔细检查一下各个模块的编译选项。
    思考题:请分析下面几种结构体在你的平台上的内存布局,并试着寻找一种合理安排字段声明顺序的方法以尽量节省内存空间。
    A. struct P1 { int a; char b; int c; char d; };
    B. struct P2 { int a; char b; char c; int d; };
    C. struct P3 { short a[3]; char b[3]; };
    D. struct P4 { short a[3]; char *b[3]; };
    E. struct P5 { struct P2 *a; char b; struct P1 a[2];  };
 
 
 1、 sizeof应用在结构上的情况
请看下面的结构:
struct MyStruct
{
double dda1;
char dda;
int type
};
对结构MyStruct采用sizeof会出现什么结果呢?sizeof(MyStruct)为多少呢?也许你会这样求:
sizeof(MyStruct)=sizeof(double)+sizeof(char)+sizeof(int)=13
但是当在VC中测试上面结构的大小时,你会发现sizeof(MyStruct)为16。你知道为什么在VC中会得出这样一个结果吗?
其实,这是VC对变量存储的一个特殊处理。为了提高CPU的存储速度,VC对一些变量的起始地址做了“对齐”处理。在默认情况下,VC规定各成员变量存放的起始地址相对于结构的起始地址的偏移量必须为该变量的类型所占用的字节数的倍数。下面列出常用类型的对齐方式(vc6.0,32位系统)。
类型
对齐方式(变量存放的起始地址相对于结构的起始地址的偏移量)
Char:偏移量必须为sizeof(char)即1的倍数;
int:偏移量必须为sizeof(int)即4的倍数;
float:偏移量必须为sizeof(float)即4的倍数;
double:偏移量必须为sizeof(double)即8的倍数;
Short:偏移量必须为sizeof(short)即2的倍数。
各成员变量在存放的时候根据在结构中出现的顺序依次申请空间,同时按照上面的对齐方式调整位置,空缺的字节VC会自动填充。同时VC为了确保结构的大小为结构的字节边界数(即该结构中占用最大空间的类型所占用的字节数)的倍数,所以在为最后一个成员变量申请空间后,还会根据需要自动填充空缺的字节。
下面用前面的例子来说明VC到底怎么样来存放结构的。
struct MyStruct
{
double dda1;
char dda;
int type
};
为上面的结构分配空间的时候,VC根据成员变量出现的顺序和对齐方式,先为第一个成员dda1分配空间,其起始地址跟结构的起始地址相同(刚好偏移量0刚好为sizeof(double)的倍数),该成员变量占用sizeof(double)=8个字节;接下来为第二个成员dda分配空间,这时下一个可以分配的地址对于结构的起始地址的偏移量为8,是sizeof(char)的倍数,所以把dda存放在偏移量为8的地方满足对齐方式,该成员变量占用 sizeof(char)=1个字节;接下来为第三个成员type分配空间,这时下一个可以分配的地址对于结构的起始地址的偏移量为9,不是sizeof (int)=4的倍数,为了满足对齐方式对偏移量的约束问题,VC自动填充3个字节(这三个字节没有放什么东西),这时下一个可以分配的地址对于结构的起始地址的偏移量为12,刚好是sizeof(int)=4的倍数,所以把type存放在偏移量为12的地方,该成员变量占用sizeof(int)=4个字节;这时整个结构的成员变量已经都分配了空间,总的占用的空间大小为:8+1+3+4=16,刚好为结构的字节边界数(即结构中占用最大空间的类型所占用的字节数sizeof(double)=8)的倍数,所以没有空缺的字节需要填充。所以整个结构的大小为:sizeof(MyStruct)=8+1+ 3+4=16,其中有3个字节是VC自动填充的,没有放任何有意义的东西。
下面再举个例子,交换一下上面的MyStruct的成员变量的位置,使它变成下面的情况:
struct MyStruct
{
char dda;
double dda1;
int type
};
这个结构占用的空间为多大呢?在VC6.0环境下,可以得到sizeof(MyStruc)为24。结合上面提到的分配空间的一些原则,分析下VC怎么样为上面的结构分配空间的。
struct MyStruct
{
char dda;//偏移量为0,满足对齐方式,dda占用1个字节;
double dda1;//下一个可用的地址的偏移量为1,不是sizeof(double)=8的倍数,需要补足7个字节才能使偏移量变为8(满足对齐方式),因此VC自动填充7个字节,dda1存放在偏移量为8的地址上,它占用8个字节。
int type;//下一个可用的地址的偏移量为16,是sizeof(int)=4的倍数,满足int的对齐方式,所以不需要VC自动填充,type存放在偏移量为16的地址上,它占用4个字节。
};
所有成员变量都分配了空间,空间总的大小为1+7+8+4=20,不是结构的节边界数(即结构中占用最大空间的类型所占用的字节数sizeof (double)=8)的倍数,所以需要填充4个字节,以满足结构的sizeof(double)=8的倍数。所以该结构总的大小为:sizeof (MyStruc)为1+7+8+4+4=24。其中总的有7+4=11个字节是VC自动填充的,没有放任何有意义的东西。
VC对结构的存储的特殊处理确实提高CPU存储变量的速度,但是有时候也带来了一些麻烦,我们也屏蔽掉变量默认的对齐方式,自己可以设定变量的对齐方式。
VC 中提供了#pragma pack(n)来设定变量以n字节对齐方式。n字节对齐就是说变量存放的起始地址的偏移量有两种情况:第一、如果n大于等于该变量所占用的字节数,那么偏移量必须满足默认的对齐方式,第二、如果n小于该变量的类型所占用的字节数,那么偏移量为n的倍数,不用满足默认的对齐方式。结构的总大小也有个约束条件,分下面两种情况:如果n大于所有成员变量类型所占用的字节数,那么结构的总大小必须为占用空间最大的变量占用的空间数的倍数;否则必须为n的倍数。
下面举例说明其用法。
#pragma pack(push) //保存对齐状态
#pragma pack(4)//设定为4字节对齐
struct test
{
char m1;
double m4;
int m3;
};
#pragma pack(pop)//恢复对齐状态
以上结构的大小为16,下面分析其存储情况,首先为m1分配空间,其偏移量为0,满足我们自己设定的对齐方式(4字节对齐),m1占用1个字节。接着开始为 m4分配空间,这时其偏移量为1,需要补足3个字节,这样使偏移量满足为n=4的倍数(因为sizeof(double)大于n),m4占用8个字节。接着为m3分配空间,这时其偏移量为12,满足为4的倍数,m3占用4个字节。这时已经为所有成员变量分配了空间,共分配了16个字节,满足为n的倍数。如果把上面的#pragma pack(4)改为#pragma pack(16),那么我们可以得到结构的大小为24。
2、 sizeof用法总结
在VC中,sizeof有着许多的用法,而且很容易引起一些错误。下面根据sizeof后面的参数对sizeof的用法做个总结。
A. 参数为数据类型或者为一般变量。例如sizeof(int),sizeof(long)等等。这种情况要注意的是不同系统系统或者不同编译器得到的结果可能是不同的。例如int类型在16位系统中占2个字节,在32位系统中占4个字节。
B. 参数为数组或指针。下面举例说明.
int a[50]; //sizeof(a)=4*50=200; 求数组所占的空间大小
int *a=new int[50];// sizeof(a)=4; a为一个指针,sizeof(a)是求指针的大小,在32位系统中,当然是占4个字节。
C.参数为结构或类。Sizeof应用在类和结构的处理情况是相同的。但有两点需要注意:第一、结构或者类中的静态成员不对结构或者类的大小产生影响,因为静态变量的存储位置与结构或者类的实例地址无关。第二、没有成员变量的结构或类的大小为1,因为必须保证结构或类的每一个实例在内存中都有唯一的地址。
下面举例说明,
Class Test{int a;static double c};//sizeof(Test)=4,静态成员不对结构或者类的大小产生影响
Test *s;//sizeof(s)=4,s为一个指针。
Class test1{ };//sizeof(test1)=1,没有成员变量的结构或类的大小为1
D. 参数为其他。下面举例说明。
int func(char s[5]);
{
cout<
//数的参数在传递的时候系统处理为一个指针,所以sizeof(s)实际上为求指针的大小。
return 1;
}
//sizeof(func(“1234”))=4//因为func的返回类型为int,所以相当于求sizeof(int).
以上为sizeof的基本用法,在实际的使用中要注意分析VC的分配变量的分配策略,这样的话可以避免一些错误。
 
相关文章:
 
 
广告

让系统时间更准确

使用NTP协议可以让你的计算机自动与服务器上的时间同步。从而保持最准确的时间。
中国国家授时中心的IP地址是:210.72.145.44。
 
在 Windows XP/2000 可下使用以下命令设置计算机的时间同步:
 
在控制面板,管理工具,服务中找到 Windows Time,设置启动类型为自动,再按下启动按钮。
在 DOS 命令行下让 Windows 使用国家授时中心的时间服务器:net time /setsntp:210.72.145.44
要想立刻与时间服务器同步需要重启时间服务,相应的命令是:
net stop w32time
net start w32time
以后你的机器就会有一个准确的时间。

今天把我的 Hotmail 变成了 Live Mail

  

图片:

图片:

今天看到在Neowin有人找到一个不用邀请也能把Hotmail 变成Live Mail Beta的方法,但成功率只有50%罢了!
也有人说你的hotmail用了3年的成功转换机会比较高,N多人都已经成功了!!!

1.首先要把你的个人资料改去
Language –> English
Country –> United States
State –> Florida.

2. 把这个网址LINK 放在浏览器(只是IE)
http://by101fd.bay101.hotmail.msn.com/cgi-bin/BetaOptIn?page=option&curmbox=00000000%2d0000%2d0000%2d0000%2d000000000001&a=b9a426ebd4880ad9d14db4b4c55a69f8bb8dea2282102422220030b2b6bb98c8

3.Sign in

4.你应该登入不到,再把网址放在浏览器。

5.当你看到"Participate",那么你就成功了。

 
 
Live Mail 功能介绍:
 
Live Mail 最主要的升级一是支持拖放,这样在网页上操作信件就和在终端上一样方便了,二是容量扩大到2G了。

zuma 和 giza 要是支持双人对战就好了

周围好几个人都和我讨论过,zuma 和 giza 要是支持双人对战就好玩多了。
就比如说我们组里的人吧,平时就喜欢吹牛,玩什么都说自己水平比别人高。
zuma 和 giza 不支持现场比赛,大家吹起来就更肆无忌惮了。
 
zuma 和 giza 也许可以这样支持对战:
第一种方式就和泡泡龙一样,两个人各自在自己的场地里玩,但是有一方销的球多了,就会随即的给对方添一些球。
 
另一种,zuma 和 giza 可以两个人在同一个场地里玩,两个人每人守主自己的洞口,不要让球滚进来,有空的时候还可以发几个球到对方的队列上给对手捣捣乱。

想通了一个魔术

    有一天坐在公交车上无聊的瞎琢磨事情,突然被我想通了一个魔术。这是我前两个月在电视上看到的一个传统中国魔术,是当时为一位魔术师做采访时他表演的。大致表演方法就是:在桌面上倒扣一只碗,扣下时,魔术师给你看那只碗是空的。然后魔术师手中拿一只鸡蛋,在倒扣的碗上这么一晃,鸡蛋就到碗里去了。那个魔术师吹嘘自己的外号叫鬼手,自己的手比观众的眼睛还看。不过我才不信他的鬼话,要想把鸡蛋赛今碗里,就一点会把碗掀起来一点,而人眼对于物体的运动非常敏感,加上图像在视网膜上的滞留现象,如果碗动了,是一定会被人眼捕捉到的。当然如果碗被掀起时间只有几个毫秒,那这个动作也许摄像机或电视漏过,电视每秒钟只能播放大约30帧,如果饭碗的动作少于30毫秒,或许真的会被摄像机漏过。但是我不相信人的动作有这么快,何况还有现场观众呢。
    这个魔术师肯定是拿了两个鸡蛋。在他把碗扣在桌子上的同时就放了一个鸡蛋在里面,这个动作使比较容易躲过观众眼睛的。然后再拿出另一个鸡蛋放在手里装模作样,手在碗上晃来晃去的时候把手里的鸡蛋藏在袖子里。这样给人的敢决就是把鸡蛋塞到碗里去了。
    这个魔术肯定不能用透明的玻璃碗来变:)